Title: | Tools for the IUCN Red List of Ecosystems and Species |
---|---|
Description: | A toolbox created by members of the International Union for Conservation of Nature (IUCN) Red List of Ecosystems Committee for Scientific Standards. Primarily, it is a set of tools suitable for calculating the metrics required for making assessments of species and ecosystems against the IUCN Red List of Threatened Species and the IUCN Red List of Ecosystems categories and criteria. See the IUCN website for detailed guidelines, the criteria, publications and other information. |
Authors: | Calvin Lee [cre, aut] , Nicholas Murray [aut] |
Maintainer: | Calvin Lee <[email protected]> |
License: | GPL (>=3)| file LICENSE |
Version: | 1.0.4 |
Built: | 2024-11-12 06:00:08 UTC |
Source: | https://github.com/red-list-ecosystem/redlistr |
createGrid
produces empty grid which can be used as the basis to help
compute AOO.
createGrid(input.data, grid.size)
createGrid(input.data, grid.size)
input.data |
Spatial object of an ecosystem or species distribution. Please use a CRS with units measured in metres. |
grid.size |
A number specifying the width of the desired grid square (in same units as your coordinate reference system) |
A regular grid raster with extent input.data
and grid size
grid.size
. Each grid square has a unique identification number.
Nicholas Murray [email protected], Calvin Lee [email protected]
Bland, L.M., Keith, D.A., Miller, R.M., Murray, N.J. and Rodriguez, J.P. (eds.) 2016. Guidelines for the application of IUCN Red List of Ecosystems Categories and Criteria, Version 1.0. Gland, Switzerland: IUCN. ix + 94pp. Available at the following web site: https://iucnrle.org/
Other AOO functions:
getAOOSilent()
,
getAOO()
,
makeAOOGrid()
extrapolateEstimate
uses rates of decline from getDeclineStats
to extrapolate estimates to a given time
extrapolateEstimate(A.t1, year.t1, nYears, ARD = NA, PRD = NA, ARC = NA)
extrapolateEstimate(A.t1, year.t1, nYears, ARD = NA, PRD = NA, ARC = NA)
A.t1 |
Area at time t1 |
year.t1 |
Year of time t1 |
nYears |
Number of years since t1 for prediction. Use negative values for backcasting |
ARD |
Absolute rate of decline |
PRD |
Proportional rate of decline |
ARC |
Annual rate of change |
A dataframe with the forecast year, and a combination of:
Values as extrapolated with absolute rate of decline (ARD)
Values as extrapolated with proportional rate of decline (PRD)
Values as extrapolated with annual rate of change (ARC)
Nicholas Murray [email protected], Calvin Lee [email protected]
Bland, L.M., Keith, D.A., Miller, R.M., Murray, N.J. and Rodriguez, J.P. (eds.) 2016. Guidelines for the application of IUCN Red List of Ecosystems Categories and Criteria, Version 1.0. Gland, Switzerland: IUCN. ix + 94pp. Available at the following web site: https://iucnrle.org/
Other change_functions:
futureAreaEstimate()
,
sequentialExtrapolate()
a.r1 <- 23.55 a.r2 <- 15.79 decline.stats <- getDeclineStats(a.r1, a.r2, year.t1 = 1990, year.t2 = 2012, methods = 'PRD') a.2040.PRD <- extrapolateEstimate(a.r1, a.r2, year.t1 = 1990, nYears = 50, PRD = decline.stats$PRD)
a.r1 <- 23.55 a.r2 <- 15.79 decline.stats <- getDeclineStats(a.r1, a.r2, year.t1 = 1990, year.t2 = 2012, methods = 'PRD') a.2040.PRD <- extrapolateEstimate(a.r1, a.r2, year.t1 = 1990, nYears = 50, PRD = decline.stats$PRD)
futureAreaEstimate
is now deprecated, please use
extrapolateEstimate
instead
futureAreaEstimate(A.t1, year.t1, nYears, ARD = NA, PRD = NA, ARC = NA)
futureAreaEstimate(A.t1, year.t1, nYears, ARD = NA, PRD = NA, ARC = NA)
A.t1 |
Area at time t1 |
year.t1 |
Year of time t1 |
nYears |
Number of years since t1 for area prediction |
ARD |
Absolute rate of decline |
PRD |
Proportional rate of decline |
ARC |
Annual rate of change |
A dataframe with the forecast year, and a combination of:
Future area as estimated with absolute rate of decline (ARD)
Future area as estimated with proportional rate of decline (PRD)
Future area as estimated with annual rate of change (ARC)
Nicholas Murray [email protected], Calvin Lee [email protected]
Bland, L.M., Keith, D.A., Miller, R.M., Murray, N.J. and Rodriguez, J.P. (eds.) 2016. Guidelines for the application of IUCN Red List of Ecosystems Categories and Criteria, Version 1.0. Gland, Switzerland: IUCN. ix + 94pp. Available at the following web site: https://iucnrle.org/
Other change_functions:
extrapolateEstimate()
,
sequentialExtrapolate()
getAOO
determines the number of area of occupancy (AOO) grid cells
occupied by a species or ecosystem. It includes capability for specifying
whether at least one percent of the grid cell needs to be occupied before it
is counted in the AOO. This functionality is important for assessing the IUCN
Red List of Ecosystems Criteria B.
getAOO(input.data, grid.size, min.percent.rule = FALSE, percent = 1)
getAOO(input.data, grid.size, min.percent.rule = FALSE, percent = 1)
input.data |
Spatial object of an ecosystem or species distribution. Please use a CRS with units measured in metres. |
grid.size |
A number specifying the width of the desired grid square (in same units as your coordinate reference system) |
min.percent.rule |
Logical. If |
percent |
Numeric. The minimum percent to be applied as a threshold for
the |
The number of grid cells occupied by the ecosystem or species
Nicholas Murray [email protected], Calvin Lee [email protected]
Bland, L.M., Keith, D.A., Miller, R.M., Murray, N.J. and Rodriguez, J.P. (eds.) 2016. Guidelines for the application of IUCN Red List of Ecosystems Categories and Criteria, Version 1.0. Gland, Switzerland: IUCN. ix + 94pp. Available at the following web site: https://iucnrle.org/
Other AOO functions:
createGrid()
,
getAOOSilent()
,
makeAOOGrid()
crs.UTM55S <- '+proj=utm +zone=55 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs' r1 <- raster(ifelse((volcano<130), NA, 1), crs = crs.UTM55S) extent(r1) <- extent(0, 6100, 0, 8700) AOO <- getAOO(r1, 1000, min.percent.rule = TRUE, percent = 1)
crs.UTM55S <- '+proj=utm +zone=55 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs' r1 <- raster(ifelse((volcano<130), NA, 1), crs = crs.UTM55S) extent(r1) <- extent(0, 6100, 0, 8700) AOO <- getAOO(r1, 1000, min.percent.rule = TRUE, percent = 1)
getAOOSilent
is identical to getAOO
, but allows the custom
input of the grid parameter. Used for gridUncertainty
.
getAOOSilent(input.data, grid, min.percent.rule = FALSE, percent = 1)
getAOOSilent(input.data, grid, min.percent.rule = FALSE, percent = 1)
input.data |
Spatial object of an ecosystem or species distribution. Please use a CRS with units measured in metres. |
grid |
Custom grid to be used to calculate AOO. Usually the output of
|
min.percent.rule |
Logical. If |
percent |
Numeric. The minimum percent to be applied as a threshold for
the |
Value. The AOO calculated with the input distribution and grid.
Nicholas Murray [email protected], Calvin Lee [email protected]
Other AOO functions:
createGrid()
,
getAOO()
,
makeAOOGrid()
getArea
reports the area of a RasterLayer object using the pixel
counting method, or terra::expanse for SpatRaster and SpatVector objects,
or the area of a SpatialPolygons or sf object using sf::st_area
getArea(x, ...)
getArea(x, ...)
x |
Either a RasterLayer or SpatialPolygons object. For a RasterLayer, no data value should be NA |
... |
Addition arguments based on input format |
The total area of the cells of interest in km2
Nicholas Murray [email protected], Calvin Lee [email protected]
Other Change functions:
getArea.RasterLayer()
,
getArea.SpatRaster()
,
getArea.SpatVect()
,
getArea.SpatialPolygons()
,
getArea.sf()
,
getAreaLoss()
,
getDeclineStats()
crs.UTM55S <- '+proj=utm +zone=55 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs' r1 <- raster(ifelse((volcano<130), NA, 1), crs = crs.UTM55S) extent(r1) <- extent(0, 6100, 0, 8700) a.r1 <- getArea(r1) # area of all non-NA cells in r1
crs.UTM55S <- '+proj=utm +zone=55 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs' r1 <- raster(ifelse((volcano<130), NA, 1), crs = crs.UTM55S) extent(r1) <- extent(0, 6100, 0, 8700) a.r1 <- getArea(r1) # area of all non-NA cells in r1
getArea
reports the area of a RasterLayer object using the pixel
counting method.
## S3 method for class 'RasterLayer' getArea(x, value.to.count, ...)
## S3 method for class 'RasterLayer' getArea(x, value.to.count, ...)
x |
Either a RasterLayer object. No data value should be NA |
value.to.count |
Optional. Value of the cells in a RasterLayer to be counted |
... |
Addition arguments based on input format |
The total area of the cells of interest in km2
Nicholas Murray [email protected], Calvin Lee [email protected]
Other Change functions:
getArea.SpatRaster()
,
getArea.SpatVect()
,
getArea.SpatialPolygons()
,
getArea.sf()
,
getAreaLoss()
,
getArea()
,
getDeclineStats()
getArea
reports the area of a sf object using sf::st_area
## S3 method for class 'sf' getArea(x, ...)
## S3 method for class 'sf' getArea(x, ...)
x |
A sf object |
... |
Addition arguments based on input format |
The total area of the cells of interest in km2
Nicholas Murray [email protected], Calvin Lee [email protected]
Other Change functions:
getArea.RasterLayer()
,
getArea.SpatRaster()
,
getArea.SpatVect()
,
getArea.SpatialPolygons()
,
getAreaLoss()
,
getArea()
,
getDeclineStats()
getArea
reports the area of a SpatialPolygons object using sf::st_area
## S3 method for class 'SpatialPolygons' getArea(x, ...)
## S3 method for class 'SpatialPolygons' getArea(x, ...)
x |
A SpatialPolygons object. |
... |
Addition arguments based on input format |
The total area of the cells of interest in km2
Nicholas Murray [email protected], Calvin Lee [email protected]
Other Change functions:
getArea.RasterLayer()
,
getArea.SpatRaster()
,
getArea.SpatVect()
,
getArea.sf()
,
getAreaLoss()
,
getArea()
,
getDeclineStats()
getArea
reports the area of a SpatRaster object using terra::expanse
## S3 method for class 'SpatRaster' getArea(x, byValue, ...)
## S3 method for class 'SpatRaster' getArea(x, byValue, ...)
x |
SpatRaster |
byValue |
Logical. If TRUE, the area for each unique cell value is returned. |
... |
Addition arguments based on input format |
The total area of the cells of interest in km2
Nicholas Murray [email protected], Calvin Lee [email protected]
Other Change functions:
getArea.RasterLayer()
,
getArea.SpatVect()
,
getArea.SpatialPolygons()
,
getArea.sf()
,
getAreaLoss()
,
getArea()
,
getDeclineStats()
getArea
reports the area of a SpatVect. object using terra::expanse
## S3 method for class 'SpatVect' getArea(x, ...)
## S3 method for class 'SpatVect' getArea(x, ...)
x |
A SpatVect object |
... |
Addition arguments based on input format |
The total area of the cells of interest in km2
Nicholas Murray [email protected], Calvin Lee [email protected]
Other Change functions:
getArea.RasterLayer()
,
getArea.SpatRaster()
,
getArea.SpatialPolygons()
,
getArea.sf()
,
getAreaLoss()
,
getArea()
,
getDeclineStats()
getAreaEOO
calculates the area of the EOO polygon generated from
makeEOO
the provided data
getAreaEOO(EOO.polygon, unit = "km")
getAreaEOO(EOO.polygon, unit = "km")
EOO.polygon |
An object of class SpatVect, usually the output
from |
unit |
Character. Output unit of area. One of "m", "km", or "ha" |
The area of the EOO.polygon
in km2
Nicholas Murray [email protected], Calvin Lee [email protected]
Other EOO functions:
makeEOO()
library(terra) crs.UTM55S <- '+proj=utm +zone=55 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs' r1 <- rast(ifelse((volcano<130), NA, 1), crs = crs.UTM55S) ext(r1) <- c(0, 6100, 0, 8700) EOO.polygon <- makeEOO(r1) EOO.area <- getAreaEOO(EOO.polygon)
library(terra) crs.UTM55S <- '+proj=utm +zone=55 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs' r1 <- rast(ifelse((volcano<130), NA, 1), crs = crs.UTM55S) ext(r1) <- c(0, 6100, 0, 8700) EOO.polygon <- makeEOO(r1) EOO.area <- getAreaEOO(EOO.polygon)
getAreaLoss
reports the difference in area between two inputs. These
can be RasterLayers, SpatialPolygons, SpatRaster, SpatVect, sf or numbers.
Any combinations of these inputs are valid. If using number as input, ensure
it is measured in km2
getAreaLoss(x, y)
getAreaLoss(x, y)
x |
Spatial obect or numeric representing area in km2 |
y |
Spatial object or numeric representing area in km2 |
Returns the difference in area of the two inputs in km2
Nicholas Murray [email protected], Calvin Lee [email protected]
Other Change functions:
getArea.RasterLayer()
,
getArea.SpatRaster()
,
getArea.SpatVect()
,
getArea.SpatialPolygons()
,
getArea.sf()
,
getArea()
,
getDeclineStats()
crs.UTM55S <- '+proj=utm +zone=55 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs' r1 <- raster(ifelse((volcano<130), NA, 1), crs = crs.UTM55S) extent(r1) <- extent(0, 6100, 0, 8700) r2 <- raster(ifelse((volcano<145), NA, 1), crs = crs.UTM55S) extent(r2) <- extent(0, 6100, 0, 8700) a.dif <- getAreaLoss(r1, r2) # distribution rasters
crs.UTM55S <- '+proj=utm +zone=55 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs' r1 <- raster(ifelse((volcano<130), NA, 1), crs = crs.UTM55S) extent(r1) <- extent(0, 6100, 0, 8700) r2 <- raster(ifelse((volcano<145), NA, 1), crs = crs.UTM55S) extent(r2) <- extent(0, 6100, 0, 8700) a.dif <- getAreaLoss(r1, r2) # distribution rasters
getDeclineStats
calculates the Proportional Rate of Decline (PRD),
Absolute Rate of Decline (ARD) and Annual Rate of Change (ARC), given two
areas at two points in time. Also provides the total area difference. Inputs
are usually the results from getArea
.
getDeclineStats(A.t1, A.t2, year.t1, year.t2, methods)
getDeclineStats(A.t1, A.t2, year.t1, year.t2, methods)
A.t1 |
Area at time t1 |
A.t2 |
Area at time t2 |
year.t1 |
Year of time t1 |
year.t2 |
Year of time t2 |
methods |
Method(s) used to calculate rate of decline. Either 'PRD', 'ARD', and/or 'ARC'. See vignette to see a more detailed explanation for each of them. |
A dataframe with absolute differences between the two inputs, and a selection of:
Proportional Rate of Decline (PRD)
Absolute Rate of Decline (ARD)
Annual Rate of Change (ARC)
Nicholas Murray [email protected], Calvin Lee [email protected]
Bland, L.M., Keith, D.A., Miller, R.M., Murray, N.J. and Rodriguez, J.P. (eds.) 2016. Guidelines for the application of IUCN Red List of Ecosystems Categories and Criteria, Version 1.0. Gland, Switzerland: IUCN. ix + 94pp. Available at the following web site: https://iucnrle.org/ Puyravaud, J.-P. 2003. Standardizing the calculation of the annual rate of deforestation. Forest Ecology and Management, 177, 593-596.
Other Change functions:
getArea.RasterLayer()
,
getArea.SpatRaster()
,
getArea.SpatVect()
,
getArea.SpatialPolygons()
,
getArea.sf()
,
getAreaLoss()
,
getArea()
a.r1 <- 23.55 a.r2 <- 15.79 decline.stats <- getDeclineStats(a.r1, a.r2, year.t1 = 1990, year.t2 = 2012, methods = c('ARD', 'ARC'))
a.r1 <- 23.55 a.r2 <- 15.79 decline.stats <- getDeclineStats(a.r1, a.r2, year.t1 = 1990, year.t2 = 2012, methods = c('ARD', 'ARC'))
gridUncertainty
determines the number of area of occupancy (AOO) grid
cells occupied by a species or ecosystem systematically. It will only stop
when the AOO calculated does not improve (decrease) after a set number of
split scenarios.
gridUncertainty( input.data, grid.size, n.AOO.improvement, min.percent.rule = FALSE, percent = 1 )
gridUncertainty( input.data, grid.size, n.AOO.improvement, min.percent.rule = FALSE, percent = 1 )
input.data |
Spatial object of an ecosystem or species distribution. Please use a CRS with units measured in metres. |
grid.size |
A number specifying the width of the desired grid square (in same units as your coordinate reference system) |
n.AOO.improvement |
Specifies the minimum number of rounds the calculated AOO is not improved before stopping the function. |
min.percent.rule |
Logical. If |
percent |
Numeric. The minimum percent to be applied as a threshold for
the |
A list containing the following:
Data frame of results showing the minimum AOO calculated for each shift scenario
Single SpatialPolygonsDataFrame containing the AOO grid which would produce the minimum AOO calculated
Calvin Lee [email protected]
Other gridUncertainty functions:
gridUncertaintyBase()
,
gridUncertaintyRandomManual()
,
gridUncertaintyRandom()
,
gridUncertaintyRestricted()
,
gridUncertaintySimulation()
crs.UTM55S <- '+proj=utm +zone=55 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs' r1 <- raster(ifelse((volcano<130), NA, 1), crs = crs.UTM55S) extent(r1) <- extent(0, 6100, 0, 8700) x <- gridUncertainty(r1, grid.size = 1000, n.AOO.improvement = 5, min.percent.rule = FALSE, percent = 1)
crs.UTM55S <- '+proj=utm +zone=55 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs' r1 <- raster(ifelse((volcano<130), NA, 1), crs = crs.UTM55S) extent(r1) <- extent(0, 6100, 0, 8700) x <- gridUncertainty(r1, grid.size = 1000, n.AOO.improvement = 5, min.percent.rule = FALSE, percent = 1)
gridUncertaintyBase
helps determine the minimum number of area of
occupancy (AOO) grid cells occupied by a species or ecosystem. It varies the
location of the AOO grid by shifting in systematically in both x- and y-
axes, adding a small amount of random movement (five percent of the
grid.size
) at each point. It then returns summary statistics for the
range of AOOs calculated, and the RasterLayer(s) containing the grids with
the minimum AOO. It is the base function which is used by
gridUncertainty
, gridUncertaintySimulation
, and
gridUncertaintyRestricted
gridUncertaintyBase( input.data, grid.size, splits, min.percent.rule = FALSE, percent = 1, restriction = FALSE, min.grids.shift )
gridUncertaintyBase( input.data, grid.size, splits, min.percent.rule = FALSE, percent = 1, restriction = FALSE, min.grids.shift )
input.data |
Spatial object of an ecosystem or species distribution. Please use a CRS with units measured in metres. |
grid.size |
A number specifying the width of the desired grid square (in same units as your coordinate reference system) |
splits |
Specifies the number of ways to split the grid in ONE axis. |
min.percent.rule |
Logical. If |
percent |
Numeric. The minimum percent to be applied as a threshold for
the |
restriction |
Logical. If |
min.grids.shift |
Dataframe object with two columns (x.shift and y.shift) specifying the coordinates to restrict the AOO grid placement. |
List containing the following:
Vector of length split*split of calculated AOO for each shifted grid
Data frame of summary statistics for the results create the AOO grid(s) which return the smallest AOO
Data frame of the shift(s) required to create the AOO grid(s) with the smallest AOO
Nicholas Murray [email protected], Calvin Lee [email protected]
Other gridUncertainty functions:
gridUncertaintyRandomManual()
,
gridUncertaintyRandom()
,
gridUncertaintyRestricted()
,
gridUncertaintySimulation()
,
gridUncertainty()
gridUncertaintyRandom
helps determine the minimum number of area of
occupancy (AOO) grid cells occupied by a species or ecosystem. It varies the
location of the AOO grid by shifting in randomly in both x- and y-
axes, returning summary statistics for the range of AOOs calculated, and the
RasterLayer(s) containing the grids with the minimum AOO. It automatically
stops when the AOO no longer improves after a specified number of rounds.
gridUncertaintyRandom( input.data, grid.size, n.AOO.improvement, min.percent.rule = FALSE, percent = 1, max.n.rounds = 1000 )
gridUncertaintyRandom( input.data, grid.size, n.AOO.improvement, min.percent.rule = FALSE, percent = 1, max.n.rounds = 1000 )
input.data |
Spatial object of an ecosystem or species distribution. Please use a CRS with units measured in metres. |
grid.size |
A number specifying the width of the desired grid square (in same units as your coordinate reference system) |
n.AOO.improvement |
Specifies the minimum number of rounds the calculated AOO is not improved before stopping the function. |
min.percent.rule |
Logical. If |
percent |
Numeric. The minimum percent to be applied as a threshold for
the |
max.n.rounds |
Specifies the maximum number of rounds to calculate AOOs. Generally unused except to limit computation time. |
List containing the following:
Data frame of summary statistics for the results
Data frame showing the distance shifted in x and y directions used to create the AOO grid(s) and their associated AOOs
List of RasterLayer(s) containing the AOO grid(s) which return the smallest AOO
Calvin Lee [email protected]. Nicholas Murray [email protected]
Other gridUncertainty functions:
gridUncertaintyBase()
,
gridUncertaintyRandomManual()
,
gridUncertaintyRestricted()
,
gridUncertaintySimulation()
,
gridUncertainty()
crs.UTM55S <- '+proj=utm +zone=55 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs' r1 <- raster(ifelse((volcano<130), NA, 1), crs = crs.UTM55S) extent(r1) <- extent(0, 6100, 0, 8700) x <- gridUncertaintyRandom(r1, grid.size = 1000, n.AOO.improvement = 50, min.percent.rule = TRUE, percent = 1)
crs.UTM55S <- '+proj=utm +zone=55 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs' r1 <- raster(ifelse((volcano<130), NA, 1), crs = crs.UTM55S) extent(r1) <- extent(0, 6100, 0, 8700) x <- gridUncertaintyRandom(r1, grid.size = 1000, n.AOO.improvement = 50, min.percent.rule = TRUE, percent = 1)
gridUncertaintyRandomManual
helps determine the minimum number of area of
occupancy (AOO) grid cells occupied by a species or ecosystem. It varies the
location of the AOO grid by shifting in randomly in both x- and y-
axes, returning summary statistics for the range of AOOs calculated, and the
RasterLayer(s) containing the grids with the minimum AOO. Requires manual
input for the number of simulations to perform.
gridUncertaintyRandomManual( input.data, grid.size, n.sim = 10, min.percent.rule = FALSE, percent = 1 )
gridUncertaintyRandomManual( input.data, grid.size, n.sim = 10, min.percent.rule = FALSE, percent = 1 )
input.data |
Spatial object of an ecosystem or species distribution. Please use a CRS with units measured in metres. |
grid.size |
A number specifying the width of the desired grid square (in same units as your coordinate reference system) |
n.sim |
Specifies the number of random grids to be created and tested. |
min.percent.rule |
Logical. If |
percent |
Numeric. The minimum percent to be applied as a threshold for
the |
List containing the following:
Data frame of summary statistics for the results
Data frame showing the distance shifted in x and y directions used to create the AOO grid(s) and their associated AOOs
List of RasterLayer(s) containing the AOO grid(s) which return the smallest AOO
Nicholas Murray [email protected], Calvin Lee [email protected]
Other gridUncertainty functions:
gridUncertaintyBase()
,
gridUncertaintyRandom()
,
gridUncertaintyRestricted()
,
gridUncertaintySimulation()
,
gridUncertainty()
gridUncertaintyRestricted
determines the number of area of occupancy (AOO) grid
cells occupied by a species or ecosystem systematically. It will only stop
when the AOO calculated does not improve (decrease) after a set number of
split scenarios. The number of grids within each split is restricted to only
include those which are already found nearby to ones already with the minimum
AOO.
gridUncertaintyRestricted( input.data, grid.size, n.AOO.improvement, min.percent.rule = FALSE, percent = 1 )
gridUncertaintyRestricted( input.data, grid.size, n.AOO.improvement, min.percent.rule = FALSE, percent = 1 )
input.data |
Spatial object of an ecosystem or species distribution. Please use a CRS with units measured in metres. |
grid.size |
A number specifying the width of the desired grid square (in same units as your coordinate reference system) |
n.AOO.improvement |
Specifies the minimum number of rounds the calculated AOO is not improved before stopping the function. |
min.percent.rule |
Logical. If |
percent |
Numeric. The minimum percent to be applied as a threshold for
the |
A list containing the following:
Data frame of results showing the minimum AOO calculated for each shift scenario
Single SpatialPolygonsDataFrame containing the AOO grid which would produce the minimum AOO calculated
Calvin Lee [email protected]
Other gridUncertainty functions:
gridUncertaintyBase()
,
gridUncertaintyRandomManual()
,
gridUncertaintyRandom()
,
gridUncertaintySimulation()
,
gridUncertainty()
gridUncertaintySimulation
returns the maximum and minimum number of
area of occupancy (AOO) grid cells occupied by a species or ecosystem in
incremental splits using gridUncertaintyBase
.
gridUncertaintySimulation( input.data, grid.size, simulations, min.percent.rule = FALSE, percent = 1 )
gridUncertaintySimulation( input.data, grid.size, simulations, min.percent.rule = FALSE, percent = 1 )
input.data |
Spatial object of an ecosystem or species distribution. Please use a CRS with units measured in metres. |
grid.size |
A number specifying the width of the desired grid square (in same units as your coordinate reference system) |
simulations |
Specifies the maximum number of splits to be performed on the generated grid |
min.percent.rule |
Logical. If |
percent |
Numeric. The minimum percent to be applied as a threshold for
the |
Data frame of results showing the minimum and maximum AOO calculated for each grid shift scenario.
Calvin Lee [email protected]
Other gridUncertainty functions:
gridUncertaintyBase()
,
gridUncertaintyRandomManual()
,
gridUncertaintyRandom()
,
gridUncertaintyRestricted()
,
gridUncertainty()
makeAOOGrid
is a generic function that creates grids representing the
area of occupancy for distributions based on the input spatial data. It
includes capability for specifying whether a minimum percent of the grid cell
needs to be occupied before it is counted in the AOO. This functionality is
important for assessing the IUCN Red List of Ecosystems Criteria B.
makeAOOGrid(input.data, grid.size, min.percent.rule = FALSE, percent = 1)
makeAOOGrid(input.data, grid.size, min.percent.rule = FALSE, percent = 1)
input.data |
Spatial object of an ecosystem or species distribution. Please use a CRS with units measured in metres. |
grid.size |
A number specifying the width of the desired grid square (in same units as your coordinate reference system) |
min.percent.rule |
Logical. If |
percent |
Numeric. The minimum percent to be applied as a threshold for
the |
A shapefile of grid cells occupied by an ecosystem or species
Nicholas Murray [email protected], Calvin Lee [email protected]
Bland, L.M., Keith, D.A., Miller, R.M., Murray, N.J. and Rodriguez, J.P. (eds.) 2016. Guidelines for the application of IUCN Red List of Ecosystems Categories and Criteria, Version 1.0. Gland, Switzerland: IUCN. ix + 94pp. Available at the following web site: https://iucnrle.org/
Other AOO functions:
createGrid()
,
getAOOSilent()
,
getAOO()
crs.UTM55S <- '+proj=utm +zone=55 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs' r1 <- raster(ifelse((volcano<130), NA, 1), crs = crs.UTM55S) extent(r1) <- extent(0, 6100, 0, 8700) AOO_grid <- makeAOOGrid(r1, 1000, min.percent.rule = TRUE, percent = 1)
crs.UTM55S <- '+proj=utm +zone=55 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs' r1 <- raster(ifelse((volcano<130), NA, 1), crs = crs.UTM55S) extent(r1) <- extent(0, 6100, 0, 8700) AOO_grid <- makeAOOGrid(r1, 1000, min.percent.rule = TRUE, percent = 1)
makeEOO
is a generic function that creates a minimum convex polygon
enclosing all occurrences of the provided spatial data. If the input provided
is a raster layer, the points are taken from a buffer that has the radius of
half of the shorter edge of the pixel around the centroid.
makeEOO(input.data)
makeEOO(input.data)
input.data |
Spatial object of an ecosystem or species distribution. Please use a CRS with units measured in metres. |
An object of class SpatVect representing the EOO of
input.data
. Also inherits its CRS.
Nicholas Murray [email protected], Calvin Lee [email protected]
Bland, L.M., Keith, D.A., Miller, R.M., Murray, N.J. and Rodriguez, J.P. (eds.) 2016. Guidelines for the application of IUCN Red List of Ecosystems Categories and Criteria, Version 1.0. Gland, Switzerland: IUCN. ix + 94pp. Available at the following web site: https://iucnrle.org/
Other EOO functions:
getAreaEOO()
library(terra) crs.UTM55S <- '+proj=utm +zone=55 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs' r1 <- rast(ifelse((volcano<130), NA, 1), crs = crs.UTM55S) ext(r1) <- c(0, 6100, 0, 8700) EOO.polygon <- makeEOO(r1)
library(terra) crs.UTM55S <- '+proj=utm +zone=55 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs' r1 <- rast(ifelse((volcano<130), NA, 1), crs = crs.UTM55S) ext(r1) <- c(0, 6100, 0, 8700) EOO.polygon <- makeEOO(r1)
sequentialExtrapolate
uses rates of decline from getDeclineStats and
generates a sequence of estimates at regular time-steps. Useful for
generating a sequence for plotting graphs.
sequentialExtrapolate(A.t1, year.t1, nYears, ARD = NA, PRD = NA, ARC = NA)
sequentialExtrapolate(A.t1, year.t1, nYears, ARD = NA, PRD = NA, ARC = NA)
A.t1 |
Area at time t1 |
year.t1 |
Year of time t1 |
nYears |
Number of years since t1 for prediction. Use negative values for backcasting |
ARD |
Absolute rate of decline |
PRD |
Proportional rate of decline |
ARC |
Annual rate of change |
A dataframe with the forecast year, and a combination of:
Sequence of values as extrapolated with absolute rate of decline (ARD)
Sequence of values as extrapolated with proportional rate of decline (PRD)
Sequence of values as extrapolated with annual rate of change (ARC)
Calvin Lee [email protected]
Bland, L.M., Keith, D.A., Miller, R.M., Murray, N.J. and Rodriguez, J.P. (eds.) 2016. Guidelines for the application of IUCN Red List of Ecosystems Categories and Criteria, Version 1.0. Gland, Switzerland: IUCN. ix + 94pp. Available at the following web site: https://iucnrle.org/
Other change_functions:
extrapolateEstimate()
,
futureAreaEstimate()
a.r1 <- 23.55 a.r2 <- 15.79 decline.stats <- getDeclineStats(a.r1, a.r2, year.t1 = 1990, year.t2 = 2012, methods = 'PRD') a.2040.PRD.seq <- sequentialExtrapolate(a.r1, a.r2, year.t1 = 1990, nYears = 50, PRD = decline.stats$PRD)
a.r1 <- 23.55 a.r2 <- 15.79 decline.stats <- getDeclineStats(a.r1, a.r2, year.t1 = 1990, year.t2 = 2012, methods = 'PRD') a.2040.PRD.seq <- sequentialExtrapolate(a.r1, a.r2, year.t1 = 1990, nYears = 50, PRD = decline.stats$PRD)